четвер, 9 листопада 2023 р.

Многокутники вивчаємо... Частина друга, оригамна

 Якщо скласти фігурку оригамі, а потім її розгорнути, то можна побачити, що лінії згину, які в ОРИГАМЕТРІЇ називаються прямими, утворюють різні многокутники.  П'ятикласники складали дві однакові фігурки - одну з кольорового паперу, другу- з білого. Фігурку, складену з білого паперу, розгорнули і розмалювали різними кольорами отримані при складанні многокутники. Вийшли чудові твори геометричного мистецтва. Навіть, якщо ви складали однакові фігурки, то барвисті "килимки" вийшли різними , адже зафарбовували по- різному.

 На розкладених аркушах можна було знайти кількість отриманих многокутників - усіх разом і кожного виду окремо, віднайти рівні фігури, знайти, наприклад периметр найбільшого і найменшого з многокутників, порівняти їх, виміряти кути найбільшого і найменшого з многокутників, знайти суму кутів.

 Восьминожик  Ані Дуди
Серце Насті Лебідь

Літак Максима Волошина
 Папужка Каріни Томків
Зелена жабка Юлі Теляги

Якась цікава істота Марічки Синишин.

Червона жабка Юри Яцюка

Журавлик Назара Сукача

 Човник Віталія Пушкара


 Зайчик Злати Зборовської


Чомусь сумний смайлик Марти Гребенюк

Синя пташка Єви Журби


Жабка Маргарити Леонтьєвої




 А ще - можна організувати виставку "MATH_ART_ORІGAMІ" до Всесвітнього дня орігамі. Поспішайте. хто ще не взяв участь у проєкті! До понеділка!


Многокутники вивчаємо, рівні фігури шукаємо, малюємо, витинаємо... Частина перша.

 Многокутники вивчаємо:

рівні фігури шукаємо, 

малюємо, витинаємо,

кути вимірюємо,

 периметри фігур шукаємо.

 Математика не може бути нудною, особливо, коли мова йде про геометрію. Навіть, якщо ти навчаєшся у 5 класі , а не у 7-му (адже предмет Геометрія починають вивчати саме у 7 класі). П'ятикласники ще не знають, що таке теорема, аксіома та багато інших значень таких цікавих невідомих слів. Але дещо вони вже вивчили. Наприклад, БІСЕКТРИСА кута - це промінь, який виходить з вершини кута і ділить кут навпіл.

Кути бувають ГОСТРІ, ТУПІ, ПРЯМІ, РОЗГОРНУТІ.

А Трикутники - ГОСТРОКУТНІ, ТУПОКУТНІ, ПРЯМОКУТНІ. Це якщо усі трикутники розділити за КУТАМИ!

 А якщо їх розділити за СТОРОНАМИ, трикутники бувають  РІЗНОСТОРОННІ ( усі сторони різні), РІВНОБЕДРЕНІ ( дві сторони рівні), РІВНОСТОРОННІ ( всі три сторони рівні, їх ще називають правильними)

Ми дізналися і ПЕРЕВІРИЛИ, що

СУМА КУТІВ БУДЬ-ЯКОГО ТРИКУТНИКА дорівнює 180 градусів!

- рівносторонній многокутник можна розділити на рівні рівнобедрені трикутники, шестикутник- на рівносторонні трикутники.  У цьому ми переконались, коли із квадратного аркуша вчилися витинати рівносторонній 8-кутник, 6-кутник, 5-кутник.

- з кожної вершини многокутника, який має n сторін, можна провести n-3 діагоналі. Наприклад, з кожної вершини шестикутника можна провести 3 діагоналі, восьмикутника - 5 діагоналей, семикутника - 4 діагоналі. 

- Трикутник - многокутник з НАЙМЕНШОЮ кількістю сторін, вершин і кутів - 3. Він НЕ МАЄ ДІАГОНАЛЕЙ!

- У рівнобедреному трикутнику два кути рівні ( ті, що прилягають до основи).

- У рівносторонньому трикутнику усі кути рівні - по 60 градусів.

Спочатку навчились із прямокутного аркуша отримати квадрат!


Склали аркуш по діагоналях. Отримали трикутник. Який? правильно, рівнобедрений прямокутний. А скільки? Чи рівні вони між собою?



 Многокутники вирізали, а далі- витинанкова магія!





 Ось такий колаж вийшов! Математично- витинанковий!



 



пʼятниця, 3 листопада 2023 р.

Многогранники, логарифми, музика, мистецтво. Гадаєте , нічого спільного? Помиляєтесь!

 Так помиляєтесь!! І це довели учні 11-Б класу, захищаючи свої дослідницькі проєкти. Впродовж вивчення теми "Логарифмічна  функція " з алгебри та "Многогранники" з геометрії учні працювали над вибраними ними проєктами. Так Остапа Мниха, Яну Сидор зацікавила тема логарифмів, зокрема логарифми у музиці, акустиці, в інших галузях життя людини. Його доповідь була блискучою, грунтовною і цікавою.  Історією виникнення логарифмів, логарифмами у природі зацікавилась Софія Бойчук та Соломія Кривицька.

https://youtu.be/HF4l1oMF0Bo



https://youtu.be/zRbZg6u0vwc






Доповідь Остапа Мниха

   Проект на тему:

                                               Алгебра в музиці

                                                                                                                                                                                                                                                                                                                                     Найяскравішим прикладом поєднання математики і музики є дослідження відомого математика Піфагора. Він першим здогадався про існування природного звукоряду і, щоб довести це, сконструював музичний інструмент-монохорд. Дослідження Піфагора лягли в основу науки акустики.

Також великим внеском у музику є дослідження Андреаса Веркмейстра. Завдяки його математичним розрахункам, які стали революційними, з’явилася клавіатура фортепіано.



 Андреас Веркмейстр                                                                                                           

Дослідженню музики присвячували свої роботи багато відомих математиків: Рене Декарт, Готфрід Лейбніц, Християн Гольдбах, Жан Д'Аламбер, Леонард Ейлер, Данило Бернуллі. Перша праця Рене Декарта - "Compendium Musicae" ("Трактат про музику"), перша велика робота Леонарда Ейлера - "Дисертація про звук». Ця робота 1727 року починалася словами: «Моєю кінцевою метою в цій праці було те, що я прагнув представити музику як частину математики і вивести в належному порядку з правильних підстав все, що може зробити приємним об'єднанням і змішуванням звуків". Лейбніц в листі Гольдбаху пише: «Музика є прихована арифметична вправа душі, що не вміє рахувати". І Гольдбах йому відповідає: "Музика - це прояв прихованої математики".

Чому ж прихованої? Адже в Стародавній Греції музика прямо вважалася частиною математики, а ще точніше, розділом теорії чисел. Першим, хто спробував висловити красу музики за допомогою чисел, був Піфагор - той самий, чиїм ім'ям названа знаменита теорема. І в XVII столітті французький філософ, фізик, математик Марен Мерсен в трактаті «Істина наук проти скептиків або піроніків" також розглядав музику як галузь математики. Піфагор був не лише математиком і філософом, а й теоретиком музики. Він займався пошуками музичної гармонії, оскільки вірив у те, що така музика необхідна для очищення душі і лікування тіла і здатна допомогти розгадати будь-яку таємницю. Одного разу, проходячи повз кузню, Піфагор випадково почув, як удари молотів створюють цілком певне співзвуччя, і після цього зайнявся експериментами, намагаючись знайти співвідношення між висотою тону і числами. За допомогою чаші з водою і однострунної арфи він вивчив взаємозв'язок між рівнем води і довжиною струни і виявив, що половина довжини струни піднімає ноту на одну октаву вгору.

Вісім звуків - до, ре, мі, фа, соль, ля, сі, до - найдавніша музична гама. В наші дні темперована гамма включає в себе дванадцять нот, включаючи діези і бемолі, але в основі її лежить винахід, за який ми повинні дякувати Піфагору. Існує припущення, що Піфагорів лад - його гаму - удосконалив Архит, але і в античній Греції, і в епоху Відродження гаму з восьми звуків називали Піфагора діатонічною гамою.

Піфагорова теорія музики досягла навіть небес. Піфагор поділяв уявлення про сферичності світобудови і при цьому першим назвав Всесвіт «космосом». У ті часи крім Землі, Місяця і Сонця були відомі тільки Меркурій, Венера, Марс, Юпітер і Сатурн. Але ще Піфагор припустив існування «анти-Землі» і при цьому виділяв 10 небесних тіл. Зрозуміло, це твердження було тоді чисто теоретичним: число «10» для нього символізувало гармонію Всесвіту. Пізніше він захопився ідеєю «музики сфер», прагнучи пов'язати консонантні (гармонійні) звуки з планетарними сферами. Він виходив з того, що інтервал в просторі між планетами - той же, що і шкала висоти музичного звуку. Кожна планета, рухаючись з постійною швидкістю, проходить певну відстань, створюючи звук. У міру того як відстань планет від центру збільшується, а обертання планет прискорюється, звук стає вище. Саме так Піфагор уявляв собі музику, яка звучить по всьому Всесвіті. Про вплив музики на людину з давніх давен було добре відомо багатьом вченим, однак на зв'язок музики і чисел першим вказав саме Піфагор. Таким чином Піфагор отримав перший ключ до поняття музичного інтервалу в діатонічному звукоряді. Якщо вдаватися до конкретики, то варто уточнити яким чином у піфагореїзмі була облаштована «гармонія сфер». Відповідно до точки зору, яка видається досить імовірною, «в найдавнішому варіанті (у самого Піфагора) йшлося тільки про три сфери зірок (включаючи планети), а саме Місяця і Сонця, вони співвідносяться із трьома інтервалами: квартою (3:4), квінтою (2:3) і октавою (1:2). Таким чином вся музично-математична сутність космосу сповна вписується у тетрактиди. Відповідно до цього, гармонія сфер – це пропорція трьох планет і чотирьох чисел 6:8:9:12, що містить у собі всі три види середніх – геометричне, арифметичне і гармонічне. Загалом, це відкриття Піфагора подано у «Арифметиці» Нікомаха («найдосконаліша гармонія», τελειοτάτη ἁρμονία, Arithm. II,29) і Боеція («найдосконаліша гармонія», maxima perfectaque armonia, Arithm. II, 54)

 

Піфагор стверджував, що «музика дуже благотворно діє на здоров'я, якщо займатися нею належним чином». Тому піфагорійці, «відходячи до сну, очищали розум від денного сум'яття і шуму певними піснями й особливого роду мелодіями і цим забезпечували собі спокійний сон з небагатьма і приємними сновидіннями». Одного разу Піфагору вдалося вгамувати гнів п'яного дебошира юнака просто тим, що він звелів флейтисту зіграти урочисту мелодію. Тим самим філософ не тільки відкрив цілий ряд музичних ефектів, але і знайшов їм практичне застосування в навчанні та медицині.

Акустика та музика: Номери клавішів на роялі є логарифмами чисел коливань відповідних звуків; номер октави є цілою частиною, а номер звуку в даній октаві мантисою(дробова частина логарифма за основою 2) цього логарифма. Наприклад, в тоні sol третьої октави, в числі 3 + 7/12 (= 3,583), число 3 є характеристикою логарифма числа коливань цього тону, a 7/12 (= 0,583) - мантиса того ж логарифма при основі 2; отже, число коливань в 23,583, тобто в 11,98, раз більше числа коливань тона do першої октави.

Логарифмічна шкала децибел використовується для вимірювання гучності звуку. Це дозволяє представити широкий діапазон звукових рівнів, від найтихішого до найгучнішого, в зручній формі. Тип шкали вимірювань логарифмічних величин, що побудована на основі використання логарифмічного перетворення. Для побудови логарифмічних шкал зазвичай використовуються системи десяткових або натуральних логарифмів, а також система логарифмів з основою два.

Крім того, для багатьох органів чуття величина відчуття є пропорційною логарифму впливу. Наприклад, в музиці ноти, що розрізняються за частотою вдвічі, сприймаються як одна і та ж нота на октаву вище, а інтервал між нотами у півтону відповідає відношенню їх частот 21/12. Тому нотна шкала — є логарифмічною з використанням логарифма з основою 2. Крім того, відповідно до закону Вебера — Фехнера, гучність звуку на сприйняття також пропорційна логарифму його інтенсивності (зокрема, логарифму потужності, що випромінюється звуковою колонкою). Тому на амплітудно-частотних характеристиках звуковідтворюючих пристроїв застосовують логарифмічний масштаб по обох осях.

 Джерела використанні під час дослідження:

 

https://www.youtube.com/watch?v=sBhEi4L91Sg&pp=ygURbG9nYXJpdGhtaWMgc2NhbGU%3D

https://math2service.blogspot.com/p/blog-page_12.html

https://uk.wikipedia.org/wiki/%D0%94%D0%B5%D1%86%D0%B8%D0%B1%D0%B5%D0%BB

https://uk.wikipedia.org/wiki/%D0%9B%D0%BE%D0%B3%D0%B0%D1%80%D0%B8%D1%84%D0%BC%D1%96%D1%87%D0%BD%D0%B0_%D1%88%D0%BA%D0%B0%D0%BB%D0%B0

https://naurok.com.ua/rozrobka-uroku-gri-na-temu-logarifmichna-funkciya-osnovni-vlastivosti-logarifmiv-122090.html

https://ppt-online.org/72201

https://buki.com.ua/blogs/logarifm-ta-iogo-zastosuvannya/

 

                                                     

                                                                                                                                                                                                                                                            

 Презентація проєкту "Логарифми" Соломії Кривицької заслуговує найвищої оцінки! Молодець!




З геометрії охочих до досліджень виявилось більше. 
Тему "Зірчасті многогранники" досліджувала  Софія Бойчук.
 Многогранники в архітектурі та мистецтві зацікавили Яну Сидор і Катю Вербіцьку. Доповідачі не лише цікаво розповідали про історію вивчення многогранників, про їх види, утворення, про многогранники у мистецтві ( згадали про художника Ешера), архітектурі  ( від найдавніших споруд- пірамід -- до сучасних будівель), але й створили модель зірчастого многогранника (Софія Бойчук) і модель єгипетської піраміди Хеопса у масштабі.

















Цікавим, насиченим був виступ Соломії Кривицької .Тема її дослідження - многогранники. Учні дізналися про многогранники Кельвіна, про історію вивчення многогранників. А також про загадковий об'єкт у формі многогранника з круглим отворами, який зберігається у музеї Бельгії. За словами Гвідо Крімерса, існує кілька версій призначень цього  многогранника: символ влади, пристрій для гри, вимірювальний прилад. Достеменно невідомо,тож є простір для досліджень. 
А ще у своєму виступі Соломія запропонувала цікаву головоломку, пов'язану із многогранником-додекаедром ( двадцятигранником).















 Молодці!

Як учні 10-Б класу дивували, переконували , досліджували... Математика- це життя, математика - це цікаво!

 Два дні поспіль у 10-Б класі учні захищали свої науково-дослідницькі проєкти з алгебри та геометрії. Мета  цих проєктів - дослідити зв'язок математики із життям, дізнатися про життя і діяльність математиків давнини і сучасності, зокрема, українських,  роль жінок у математичній науці, про розвиток математики від її витоків до сьогодення.Учні попрацювали на славу. Я, як їх вчитель, задоволена результатами досліджень і представленням їх. Теми для досліджень були на вибір. Але найбільше зацікавили учнів такі:

1. Геометрія Евкліда як перша наукова система

2. Геометрія в музиці.

3. Геометрія  Лобачевського

4.Легенда геометрії Олексій Погорєлов

5. Одержимий геометрією Ісаак Кушнір

6. Видатні українські жінки- математики

7.Чудові математичні криві

8. Функції у житті людини 

Теми різні, цікаві. Довелося гарно попрацювати, аби здивувати своїх однокласників, знайти такі факти, цікавинки, аби презентації не були одноманітними . І деяким доповідачам вдалося здивувати,зацікавити. Хочеться відзначити роботи Юрія Барського ( "Функції в житті людини"), Насті Єрш ( "Геометрія в музиці"), яка подарувала присутнім ще й хвилинки інтерактивного музичного релаксу, і, сподіваюсь , переконала слухачів (і себе), що геометрія є і в музиці.Цікавими були дослідження чудових кривих у роботах Софії Зборовської, Насті Павлусик, Валерї Остроумової  ( "Чудові математичні криві"), Ірини Вовк , Насті Бабій, Валерії Остроумової  про геометрію Евкліда. Ознайомились і спробували збагнути  геометрію Лобачевського Настя Павлусик і Софія Зборовська.

Учні дізналися про українських геометрів, педагогів, авторів численної кількості збірників задач і підручників, зокрема, шкільних Ісаака Кушніра та  Олексія Погорєлова із виступів Олесі Скиби, Ангеліни Руденської, Вероніки Куш, Володимира Шмиги та Іри Буцій. Тепер ми  знаємо, що таке емоційна геометрія, а що таке формульна геометрія, про те, що український педагог Ісаак Кушнір  двічі став лауреатом премії Сороса за його внесок у галузь точних наук. А ще спробували розв'язати Задачу Наполеона. Дізналися, що багато поколінь вивчали геометрію за підручником О. Погорєлова ( у 1980-2007 роках підручник був одним з основних). Останнє видання цього підручника  в Україні було у 2008 році. 

 Хвилі сірості й корупції вимили оригінальний підручник зі шкільної освіти в Україні. "Олексій Погорєлов був самородком. ограненим невтомною працею. І хоча його нема вже з нами, але залишилися його теореми, написані книжки, а найголовніше- його приклад самовідданого служіння істині ", такими словами завершила свій виступ О. Скиба.     Захищали свої проєкти Оля і Софія Центар, Аліна Мудра, Данило Грицик, Юра Гарасим.                                                                                                                                                                                                                                         





















Кращі презентації можна переглянути за посиланнями

1.Вероніка Куш, Ангеліна Руденська
"Українські жінки- математики і їх вклад у вітчизняну і світову науку"

https://docs.google.com/presentation/d/1aFUJUiLF-cr4Um9Hu1Ef9yYTVXbACXqQGXw6w1pm_Ms/edit#slide=id.g54dda1946d_6_308

2. Грицик Данило



3. Юрій Барський


4. Олеся Скиба


5.Юрій Барський
 



6. Олеся Скиба



7. Валерія Остроумова



8. Валерія Остроумова, Настя Бабій


9 .  Вероніка Куш, Ангеліна Руденська. Одержимий геометрією Ісаак Кушнір

10. Настя Єрш "Геометрія і музика" ( відео буде )
Інтерактивна вправа від Насті: прослухайте барабанну композицію і знайдіть у ній геометрію!



 Молодці!